788 ATJAA JOURNAL, VOL. 31, NO. 4: TECHNICAL NOTES

sample burning in 21% oxygen is shown in Fig. 2. The flame burns
the length of the sample in 11 s. The camera detects small glowing
pieces shooting out from the flame and some of the char glowing
and folding over into the flame. The width of the flame on each
side of the paper changes during the burn. During this time, the lat-
eral g level crosses from one direction to the other. The 18% oxy-
gen, laboratory wiper flame, not shown here, burns to completion
in the reduced-gravity period. The intensified array camera gains
for these two flames are 72 and 1800. The flames would have been
difficult to detect using film or conventional color CCD cameras.
An additional test using 18% oxygen, with the narrowband inter-
ference filter, produced inconclusive results. Because the filter
bandwidth of 1 nm is too narrow compared to the CH spectral
bandwidih of 10-15 nm at flame temperatures, the image appears
dim. The laboratory wiper sample in 15% oxygen appear to ignite
but extinguishes quickly. No flame is detected after 5 s with the
camera at its highest gain.

Flame Spread Rates

Measurements of the flame spread rates are useful for an order-
of-magnitude comparison to other reduced-gravity measurements,
although the induced flows due to buoyancy are not known. For
each flame, the leading edge is specified to occur at a gray level
chosen by eye, e.g., 60 out of 255, and its position is measured for
each frame. The relative flame positions vs time from ignition for
four tests are shown in Fig. 3. After the first few seconds of igni-
tion and stabilization, the flames spread steadily over the paper
samples.

The average flame spread rates for the ashiess filter paper burn-
ing in 21% oxygen and 18% oxygen are 0.16 cm/s and 0.09 cm/s,
respectively. The approximate z-axis g level for the 18% oxygen
test oscillates between £0.02 g. The flame position advances and
retreats on a timescale of seconds and appears to correlate, as does
the flame standoff, with positive and negative g levels. As the
flame advances, the leading edge narrows and approaches the
paper; as the flame retreats, the leading edge widens. Both flames
move little during the reduced-gravity time and may be influenced
by the presence of the ignitor. There is littie data obtained in
reduced gravity for this fuel with which to make a comparison.
Some unpublished data, obtained in the NASA Lewis Zero Gravity
facility, show that ashless filter paper samples burning in a 1 atm,
30% oxygen—70% nitrogen, quiescent environment have a spread
rate of approximately 0.12 cm/s.5 The flame images are dim blue
and difficult to analyze. The flame spread rate observed here for
ashless filter paper in 21% oxygen is higher than that measured in
the quiescent, 30% oxygen drop tower test, probably due to the
induced buoyant flow from the residual g level.

The laboratory wiper samples burn faster than the ashless filter
paper samples. The average flame spread rates for the laboratory
wiper in 21% oxygen and 18% oxygen are 0.8 cm/s and 0.5 cmy/s,
respectively. Previous drop tower experiments using this fuel show
a spread rate of 0.54 cm/s at the molar oxygen extinction limit of
21% for quiescent flame spread.? When a slow opposed flow or
concurrent flow on the order of 5-7 cm/s is imposed, the flame
spread rate increases above the quiescent flame spread rate.>* The
flame spread rate for the laboratory wiper in 21% oxygen observed
here is higher than the quiescent drop tower measurement, but is
consistent with the presence of induced flows on the order of those
studied in the forced-flow experiments in the drop tower. Like-
wise, the flame spread rate for a laboratory wiper in 18% oxygen
observed here is similar to those measured using a siow opposed
flow or concurrent flow in the drop tower.>3

Conclusions

An intensified array camera has successfully imaged weakly
Iuminous flames spreading over thermally thin paper samples in a
reduced-gravity environment aboard the NASA Learjet. The resid-
ual g level of the aircraft affects the flammability, flame shapes,
and spread rates. The flammability and measured flame spread
rates for the laboratory wipers in 21 and 18% oxygen for these
“quiescent” aircraft experiments are similar to those obtained in

forced-flow drop tower experiments, suggesting substantial in-
duced flows due to the residual g levels are present.
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Introduction
HE lower-upper (LU) algorithm!? is a highly efficient method
for obtaining numerical solutions to the “compressible” Euler
and Navier-Stokes (N-S) equations. So far, when using the LU
algorithm to analyze the N-S equations, the diffusion terms have
usually been treated explicitly.>- This is because the LU algorithm
factors according to the signs of eigenvalues associated with the
Jacobians of the flux vectors, and such eigenvalues do not exist for
the diffusion terms. When diffusion terms are treated explicitly, the
robustness of the LU algorithm can be degraded. In fact for three-
dimensional problems, numerical experiments have indicated that
the LU algorithm can become unconditionally unstable if the
residual is dominated by diffusion terms.®
In this Technical Note, a method is presented which allows dif-
fusion terms to be treated implicitly in the LU algorithm in order
that its good stability properties will not be impaired. The method
presented generalizes the concept of LU factorization from that
associated with the signs of eigenvalues to that associated with
backward- and forward-difference operators without regard to
eigenvalues.
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Methodology

To illustrate the method for treating diffusion terms implicitly,
consider the following model equation:

ou ou  du ’u u
—tc—+c,— = | —+— {1
at ax 7 ay axz ayz

where u is the dependent variable, and c,, ¢, and p are constants.

Suppose that the domain for Eq. (1) is discretized so that the time-
step size (At) and grid spacings (Ax and Ay) are all constants.

By using the Euler implicit time-differencing formula for the
time derivative, upwind differencing for the convection terms, and
central differencing for the diffusion terms, Eq. (1) can be written
in the following delta form:

[1+ 3 (a!8/+a;8! - bSZ)]A "1 _RHS ()
sEXy
where

RHS =- Y (a}8)+4a;8/- b8 uy (2b)
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InEgs. (2), a* = (a = lal)/2; a, = c At/As; b,=pAtAs%; 8°,8, and
& are backward-, forward-, and central-difference operators,
respectively; and Aw™! = ™! — y,

Since 8% = 8 — &, Eq. (2a) can be rearranged in terms of back-
ward- and forward-difference to give

[1+ (B +B)]Au;' = (1+B") (1+B) A, = RHS

(3a)
where
B = ¥ (a0 xb)s.’ (3b)
sS=XYy
and which can be split as
(1+B")Au;; = RHS (4a)
(1+B)Au " = Au], (4b)

L]

Application of Eq. (4a) at every grid point or cell produces a lower
triangular matrix. In a similar manner, Eq. (4b) produces an upper
triangular matrix.

From Egs. (3b) and (4), it can be seen that the method of LU
factorization presented here allows both the convection and the
diffusion terms to be treated implicitly.

Stability Analysis
In this section, we show that the method presented in the previ-
ous section is unconditionally stable. To simplify analysis, let all y
derivatives in Eq. (1) equal to zero and c, > 0 so that a; = 0 and
at = a,. With these simplifications and noting that & = & — &°
and 8°87(); = 8/(); — 8/();—; = 8%();» Eq. (4) can be written as

(1+a8 +b38) (1-b,8)Au™
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By using the Fourier method of stability analysis, we obtain the
following amplification factor for Eq. (5):

o2 [1+2(ab +b%) (1-cosd)]’
= ‘ )
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where G = A™Y/A" ¢ = kAx; and A and k are the amplitude and
the wave number of a Fourier component, respectively. Since a,

and b, are both positive, it can be seen from Eq. (6) that the abso-
lute value of G is less than or equal to unity for all wave numbers
k—indicating unconditional stability.

If the diffusion term is treated explicitly [i.e., b, = O only on the
two left-hand sides of Eq. (5)], then the amplification factor of the
resulting equation is given by

) [1-2b,(1-cos¢)]?
IGI* = )
1+2a,(1+a) (1 -cos¢)

From Eq. (7), it can be seen that if b, is sufficiently large, then the
absolute value of G can exceed unity—indicating conditional sta-
bility.

Application to the k- Model of Turbulence

To demonstrate the usefulness of the method presented in this
study, it was applied to the k-e model of Chen and Patel’ to simu-
late the turbulence properties in a turbulent boundary layer. The k-
£ model of Chen and Patel divides the turbulent flowfield into two
regions. One region—referred to as the wall region—extends from
the wall to the edge of the fully turbulent region. The other
region—referred to as the core region—contains the rest of the tur-
bulent flowfield which is fully turbulent everywhere. In the wall
region, the one-equation model of Wolfshtein® is used, and in the
core region, the standard k- model is used.

The standard k- model involves two partial differential equa-
tions and can be written in the following vector form:
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In the preceding equations, £ is the turbulent kinetic energy, € the
dissipation rate of k, p the Favre-averaged density; u, v, and w are
the x, y, and z components of the Favre-averaged velocity vector V;
1 is the dynamic viscosity; p, = Cup ke; C,=009C, =144, C,
=192;0;,=10;0,=13; E=ul; F=vU; G=wU; and S = C,G
(e/k) — Cop(e¥/k).

The one-equation model of Wolfshtein uses the first equation in
the vector equation given by Eq. (8) to calculate . The € and p,
are calculated by the following algebraic equation: & = ¥**/L, and

=C,p k"L, where L,=C.§ [1- exp(~R;/A)], L, = C, §
[1— exp( ~R, /Au)] C. = k/C M A=2Cp (chosen o that e = 2uk/
p 92 in the hnear sublayer), Au = 70 (chosen so that the additive
constant in the law of the wall is recovered); R, = pk2§ fu, and § is
the normal distance from the wall. Numencal experiments show
that the ¥ coordinate separating the wall and core regions must be
such that R; is greater than 200.

!
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If the k-e model just described can be lagged behind the conser-
vation equations of mass, momentum, and energy by one timestep
in the solution procedure, then p, u, v, w, and p are known, and
only & and € are unknown. By adopting this approach and by using
generalized coordinates [i.e., mapping (x, y, z, f) to (&, 1, {, 1) for
arbitrary geometries], Eq. (8) can be written as

aUJ aE aF aG oR aS+aT

= — +— + — 11
3 82; an BC d& dan 9¢ (1D
In Eq. (11),J =0, y, z, Do€,m, £, 1) is the Jacoblan, E QU
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By using the Euler implicit time-differencing formula (or a
higher-order accurate formula if transient solutions are of interest)
and linearizing nonlinear terms, Eq. (11) becomes
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In Egs. (12), n and n + 1 denote the #th and (n + l)th time levels,
respectively; AU™! = U™l — U, AJ™ = ™1 — J% D = J"'(3G/
oU)"; and I is a 2 x 2 identity matrix. Agg, Agg Aﬂﬂ’ ...,and
gé % , are defined in a manner similar to that given
(12c). Note that all cross-derivative terms have been treated
exphcltly, and that U” appearing in those terms can be replaced by
U+ AU"
The convection terms in Eq. (12) can be upwind differenced by
using flux-vector splitting. For example,

(Saéf/”“q))”k [iw +0 )q>]
" ‘

ijk

B 82 (' ) i1/t Sé(f]i‘b) i- i/z,j,k
A

= (|02 (13)

where ¢ can be U or AU. The other convection terms can be differ-
enced in a s1m11ar manner. Here, it is noted that*in the upwind
operators [e.g., 85 ( o 9) 141, 5,4)> all metric coefficients (e.g.,
é,,ﬁx,éy,iz in [7) are evaluated at the cell faces (i.e., i +V2, j, k)
and are not upwind differenced since they represent the area of the
cell faces (recall A, =JVE= (€i+ iy Jj+&,k); only flow variables
(e, u,v,wU, anc% AU) are upwind differenced. This type of dif-
ferencing makes finite-difference formulation identical to finite-
volume formulation if metric coefficients and J are interpreted as
cell face areas and volumes, respectively.

For the diffusion terms, they are all centrally differenced but
expressed in terms of one-sided difference operators. For example,

(BA d ¢"+l) _ (Aii)in/z,j,k Sf((b"“)
e EENE  nr1 T T2 B,
g agp ! ik Agz P * ik

(14
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With all spatial derivatives replaced by difference operators as
shown by Egs. (13) and (14), Eq. (12a) can be written as

(N+B°+BYAU""! = RHS (15a)

where

N =J""T+AD (15b)
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Now, approximately factor Eq. (15) according to backward- and
forward-difference operators and treat source terms as in Ref. 9 to
give

LN'U =RHS, LN+B’, U=N+B (16)
which can be split as

L AU* = RHS (17a)

UAU"' = N-AU* (17b)

Application of the preceding two equations at every interior grid
point or cell produces the desired block triangular matrices, one
lower and one upper. Here, it is noted that in the absence of source
terms (i.e., D in N), each block on the diagonal of the lower- and
upper-triangular matrices formed by Egs. (17a) and (17b) can be
diagonalized if the metric coefficients in the implicit operators are
evaluated at cell centers instead of cell faces.? This procedure was
not employed in this study not because there is a source term but
rather because that procedure destroys the conservative property of
the implicit operator.

Results

As mentioned earlier, the problem selected to test the method .
presented in this study is a turbulent boundary layer. More specifi-
cally, we are interested in computing the steady-state (in the
ensemble-averaged sense) turbulent boundary layer past a flat
plate with zero pressure gradient. This problem was selected
because diffusion terms play an important role, especially in the
direction normal to the wall, and its solutions are well known.

For this turbulent boundary-layer problem, air at static pressure
of 1.0 atm and static temperature of 373 K flowed past an adiabatic
flat plate at a freestream Mach number of 0.6 with zero pressure
gradient. The ratio of specific heats for the air was a constant at
1.4. The domain of interest is a rectangular region that is 0.25 m
in height measured from the flat plate and 1.0 m in length mea-
sured in the streamwise direction from a location where the Rey-
nolds number based on the momentum thickness is 30,000 (the
boundary-layer thickness at that location was 0.10 m).
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For this problem, the domain was discretized by using 51
equally spaced grid points in the streamwise direction (x direction)
and 125 nonequally spaced grid points in the direction normal to
the plate (y direction). In the y direction, grid points were clus-
tered towards the plate (where y = 0), and grid spacings varied
from 6 X 107" m at y = 0 (corresponding to y* = puy/uu = 0.2) to
0.025 m aty = 0.25 m which resulted in 11 grid points in the linear
sublayer (0 < y*< 3), 24 grid points in the buffer layer (3 < y*<40),
and 75 grid point in the fully turbulent region.

" The equations used to model the turbulent boundary-layer flow
are the ensemble-averaged conservation equations of mass,
momentum (thin-layer Navier-Stokes), and total energy valid for a
calorically and thermally perfect gas. The ensemble-averaged con-
servation equations were closed by the k- model of Chen and
Patel which was described in the previous section. In this study,
the turbulence model lagged behind the conservation equations of
mass, momentum, and total energy by one timestep in the solution
procedure. Solutions to the conservation equations were obtained
by using the F3D code developed by Steger et al.!? Solutions to the
turbulence model were obtained by using the algorithm described
in the previous section; the code which embodies this algorithm
will be referred to as RAAKE.

Solutions were first obtained to examine the robustness of the
algorithm developed by running RAAKE with the diffusion terms
treated explicitly and then implicitly. When the diffusion terms
were treated explicitly, numerical experiments indicated that for
the current test problem stable numerical solutions can only be
obtained if the time-step size is less than about 1 X 107% s which is
comparable to the maximum timestep size permitted by the
explicit stability criterion from linearized analysis (i.e., aA/Ay* <
172, o = (u + p/o)/p; see Eq. (7) and set a = 0 because convection
is negligible in that direction and set b = aA#fAy?). When the diffu-
sion terms were treated implicitly, numerical experiments indi-
cated that stable numerical solutions can be obtained with a time-
step size as large as 1 X 10™* s which is also the largest timestep
size that can be used by the F3D code for the test problem.

With the robustness of the algorithm established, solutions were
obtained to assess its accuracy. This was achieved by using the
F3D code with RAAKE in which the diffusion terms were treated
implicitly. The time-step size used was 1X 1077 s, Solutions were
obtained for k" = k/(u)%, € = ,, e/p,, U}, and u* = ufu, as a func-
tion of y* = pu,y/u, where u, =+7,p,, is the friction velocity, and the
subscript w denotes y = 0. The solutions obtained for k* and € are
shown in Fig. 1, and they compare well with the known behavior

of these quantities'! (i.e., they fall within the band of available
experimental data). The solution obtained for u* as a function of y*
is not shown, but is in excellent agreement (less than 0.05% differ-
ence) with the ‘solution obtained by using:the Baldwin-Lomax
model'? which is known to provide the correct solution for the cur-
rent test problem.
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Fig. 1 Solution obtained for k* and €* as a function of y*.

These numerical experiments indicate that the method presented
in this study for treating diffusion terms implicitly for the LU algo-
rithm is useful in improving robustness for problems where diffu-
sion terms play an important role.
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Eigenvalue Sensitivity with Respect to
Location of Internal Stiffness and
- Mass Attachments

B. P. Wang*
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Introduction

N recent years, sensitivity analysis has attracted great attention

in the research community.!™ Both static responses and eigen-
value sensitivity with respect to size and shape design variables
have been treated. Eigenvalue sensitivity considering shape vari-
ables is less developed. Recently, eigenvalue sensitivity for sup-
port locations have been reported.>® Specifically, Hon - and
Chuang® applied 2 material derivative concept in continuum
mechanics to derive eigenvalue sensitivity with respect to beam
support locations. This result shows that the eigenvalue sensitivity
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